Publications
2023
[1] B. Benhamou-Bui, C. Consejo, et al., Gate tunable terahertz cyclotron emission from two-dimensional Dirac fermions, arXiv:2307.11642 , 2023.
[2] S. S. Krishtopenko, F. Teppe , Magnetic-field-induced corner states in quantum spin Hall insulators, arXiv:2303.09260 , 2023.
[3] D. Coquillat, E. O’Connor, et al. , Terahertz vibrational modes of sodium magnesium chlorophyllin and chlorophyll in plant leaves, J. Infrared Milli. Terahz Waves 2023.
[4] S. Gerbert, C. Consejo, et al. , Terahertz cyclotron emission of two-dimensional Dirac fermions, Nature Photonics 17, pages 244–249, 2023.
[5] M.E. Levinshtein, N. Dyakonova, and B.A. Matveev , Low frequency noise and resistance of photodiodes with unprotected surface based on InAsSbP/InAs in an ethanol vapor atmosphere, Technical Physics Letters 11, p. 19, 2023.
[6] M. D’Antuono, Y. Chen, et al. , Tuning of the magnetotransport properties of a spin-polarized 2D electron system using visible light, Scientific Reports, 13(1), art num 10050, 2023.
[7] I. Castillo, T. Sohier, et al. , Metal-insulator crossover in monolayer MoS2, Nanotechnology, 34 (33), art num 335202, 2023.
[8] S. S. Krishtopenko, A. V. Ikonnikov, et al. , Disorder-induced phase transitions in double HgTe quantum wells, arXiv:2308.13440 , 2023.
2022
[1] A.V. Ikonnikov, S.S. Krishtopenko, et al, Origin of Structure Inversion Asymmetry in Double HgTe Quantum Wells, JETP Letters 116 (8), 547-555, 2022.
[2] C. Avogadri, S. Gebert, S.S. Krishtopenko, et al, Large inverted band gap in strained three-layer InAs/GaInSb quantum wells, Phys. Rev. Research 4, L042042 , 2022.
[3] S.S. Krishtopenko, M. Antezza, and F. Teppe, Disorder-induced topological phase transition in HgCdTe crystals, Physical Review B 106, 115203, 2022.
[4] M. Szoła, Y. Ivonyak, et al, Hydrostatic deformation potentials of narrow-gap HgCdTe, Physical Review B 106 , 195202, 2022.
[5] S.S. Krishtopenko and F. Teppe, Relativistic collapse of Landau levels of Kane fermions in crossed electric and magnetic fields, Physical Review B 105 (12), 2022.
[6] C. Bray, K. Maussang, et al.Temperature Dependent Zero-Field Splittings in Graphene, Physical Review B,106, 245141, 2022.
[7] K. Indykiewicz, C. Bray, et al. Current-induced enhancement of photo-response in graphene THz radiation detectors,AIP Advances,12(11), article number 115009, 2022.
[8] V.V. Utochkin, K.E. Kudryavtsev, et al. Stimulated Emission up to 2.75 µm from HgCdTe/CdHgTe QW Structure at Room Temperature, Nanomaterials,12(15), 2022.
[9] A. Rehman, J.A.D. Notario, et al. Nature of the 1/f noise in graphene-direct evidence for the mobility fluctuation mechanism, Nanoscale,14(19), 2022.
[10] K. Stelmaszczyk, et al. Ultrafast Time-of-Flight Method of Gasoline Contamination Detection Down to ppm Levels by Means of Terahertz Time-Domain Spectroscopy, Applied Sciences-Basel,12(3), article number 1629, 2022.
[11] M. Lechelon, et al. Experimental evidence for long-distance electrodynamic intermolecular forces, Science Advances,8(7):eabl5855, 2022.
[12] T. Otsuji, S.A. Boubanga-Tombet, et al., Graphene-based plasmonic metamaterial for terahertz laser transistors, Nanophotonics 11, 9, 1677-1696, 2022.
[13] J.A. Delgado-Notario, W. Knap,et al. Enhanced terahertz detection of multigate graphene nanostructures, Nanophotonics, 11(3), 519-529 (2022)
[14] H. Kaur, R. Sharma, T. Laurent, et al. Transport characteristics of AlGaN/GaN structures for amplification of terahertz radiations, Appl. Physics A, 128:144, 17 (2022)
[15] N. Dyakonova, S.A. Karandashev, et al. Low frequency noise in p-InAsSbP/n-InAs/n-InAsSbP and p-InAsSbP/ n-InAsSbP mid-IR light emitting diodes, Infrared Physics and Technology, 125, Article Number 104301, 2022.
2021
[1] S.V. Morozov, V.V. Rumyantsev, M.S. Zholudev, et al. Coherent Emission in the Vicinity of 10 THz due to Auger-Suppressed Recombination of Dirac Fermions in HgCdTe Quantum Wells. ACS Photonics (2021).
[2] V.Y. Aleshkin, A.A. Dubinov, V.I. Gavrilenko, F. Teppe, Terahertz plasmons in doped HgTe quantum well heterostructures: dispersion, losses, and amplification. Applied Optics,60 (28), 8991-8998 (2021).
[3] V.Y. Aleshkin, A.A. Dubinov, V.I. Gavrilenko, F. Teppe, Stimulated emission of plasmon-LO mode in narrow gap HgTe/CdHgTe quantum well. Journal of Optics23 (11), 115001 (2021).
[4] K.E. Kudryavtsev, V.V. Rumyantsev, V.V. Utochkin, et al. Toward Peltier-cooled mid-infrared HgCdTe lasers: Analyzing the temperature quenching of stimulated emission at ∼6 μm wavelength from HgCdTe quantum wells. Journal of Applied Physics130 (21), 214302 (2021).
[5] M. Asgari, D. Coquillat, G. Menichetti, et al. Quantum-dot single-electron transistor as thermoelectric quantum detectors at terahertz frequencies. Nano Letters 21(20), 8587-8594 (2021).
[6] A. Rehman, S. Smirnov, A. Krajewska, et al. Effect of ultraviolet light on 1/f noise in carbon nanotube networks. Mat. Res. Bull. 134, art n 111093 (2021).
[7] V. Ya. Aleshkin, V. V. Rumyantsev, K. E. Kudryavtsev, et al. Auger recombination in narrow gap HgCdTe/CdHgTe quantum well heterostructures. J. of Appl. Phys. 129, 133106 (2021).
[8] E. Javadi, D.B. But, K. Ikamas, et al. Sensitivity of Field-Effect Transistor-Based Terahertz Detectors. Sensors 21, 2909 (2021).
[9] G. Valusis, A. Lisauskas, H. Yuan, W. Knap, H.G. Roskos Roadmap of Terahertz Imaging 2021 (Review). Sensors21, 4092 (2021).
[10] A. Mohammadzadeh, A. Rehman, F. Kargar, et al. Room temperature depinning of the charge-density waves in quasi-two-dimensional 1T-TaS2 devices. Appl. Phys. Lett.118(22), 223101 (2021).
[11] A. Rehman, A. Krajewska, B. Stonio, et al. Generation-recombination and 1/f noise in carbon nanotube networks. Appl. Phys. Lett. 118, 242102 (2021).
[12] P. Sai, S.O. Potashin, M. Szola, et al. Beatings of ratchet current magneto-oscillations in GaN-based grating gate structures: Manifestation of spin-orbit band splitting. Phys. Rev. B. 104 (4), 045301(2021).
[13] M. Otteneder, D. Sacré, I. Yahniuk, et al. Terahertz Magnetospectroscopy of Cyclotron Resonances from Topological Surface States in Thick Films of CdxHg1-xTe. Phys. Status Solidi B. 258, 2000023 (2021).
[14] M. Dub, P. Sai, M. Sakowicz, L. Janicki et al. Double-Quantum-Well AlGaN/GaN Field Effect Transistors with Top and Back Gates: Electrical and Noise Characteristics. Micromachines 12(6), 721 (2021).
[15] N. Dyakonova, S.A. Karandashev, M.E. Levinshtein, et al. Low frequency noise in P-InAsSbP/n-InAs infrared light emitting diode-photodiode pairs. Infrared Phys. Technol. 117, 103867 (2021).
[16] A Mohammadzadeh, A Rehman, F Kargar, et al. Room temperature depinning of the charge-density waves in quasi-two-dimensional 1T-TaS2 devices. Appl. Phys. Lett. 118 (22), 223101 (2021).
[17] S.S. Krishtopenko, Higher-order topological insulator in cubic semiconductor quantum wells. Sci. Rep. 11 (1),1-13 (2021).
2020
[1] Y. Abautret, D. Coquillat, M. Zerrad, et al. Terahertz probing of sunflower leaf multilayer organization. OPTICS EXPRESS 28, 35018-35037 (2020).
[2] M. Yakunin, S.S. Krishtopenko, W. Desrat, et al. Unconventional reentrant quantum Hall effect in a HgTe/CdHgTe double quantum well. Phys. Rev. B 102, 165305 (2020).
[3] I. Grigelionis, N. Diakonova, W. Knap, et al. Radiation from shallow oxygen impurity in AlGaN/GaN HEMT structures in magnetic field. Sol. St. Comm. 320, 114019 (2020).
[4] S. Mantion, C. Avogadri, S.S. Krishtopenko, et al. Quantum Hall states in inverted HgTe quantum wells probed by transconductance fluctuations. Phys. Rev. B 102, 075302 (2020).
[5] V.V. Rumyantsev, M.A. Fadeev, V.Y. Aleshkin, et al. Terahertz emission from HgCdTe QWs under long-wavelength optical pumping. Journal of Infrared Millimeter and Terahertz Waves. 41, 750–757(2020) (2020).
[6] S.S. Krishtopenko, M. Antezza, F.Teppe. Disorder-induced phase transtion in Dirac systems beyond the linear approximation. Phys. Rev. B 101, 205424 (2020).
[7] S.S. Krishtopenko, M. Antezza, F.Teppe. Hybridization of topological surface states with a flat band. J. of Phys.-Cond. Matt. 32, 165501 (2020).
[8] S.S. Krishtopenko, A.M. Kadykov, S.Gebert, et al. Many-particle effects in optical transitions from zero-mode Landau levels in HgTe quantum wells. Phys. Rev. B 102, 041404 (2020).
[9] L.S. Bovkun, A.V. Ikonnikov, S.S. Krishtopenko,, et al. Effects of the Electron-Electron Interaction in the Magneto-Absorption Spectra of HgTe/CdHgTe Quantum Wells with an Inverted Band Structure. JETP Letters 112, 508-512 (2020).
[10] V.Y. Aleshkin, G. Alymov,.; A.A. Dubinov, et al. Plasmon recombination in narrowgap HgTe quantum wells. J. of Phys. Comm. 4, 115012 (2020).
[11] N Dyakonova, S A Karandashev, M E Levinshtein, et al. Low frequency noise in reverse biased double heterostructure P-InAsSbP/n-InAs infrared photodiodes. Sem. Sci. and Techn. 35, 075010 (2020).
[12] N Dyakonova, S A Karandashev, M E Levinshtein, et al. Low frequency noise in double heterostructure P-InAsSbP/n-InAs mid-IR photodiodes at cryogenic temperature: photovoltaic mode and forward bias. Infrared Phys. and Techn. 111, 103460 (2020).
[13] N. Dyakonova, M. Dyakonov, Z.D. Kvon. Gated two-dimensional electron gas in magnetic field: nonlinear versus linear regimes. Phys. Rev. B 102, 205305 (2020).
2019
[1] D.B. But, M. Mittendorff, M., C. Consejo, et al. Suppressed Auger scattering and tunable light emission of Landau-quantized massless Kane electrons. Nat. Photonics 13, 783–787 (2019).
[2] S.S. Krishtopenko, W. Desrat, K.E. Spirin et al. Massless Dirac fermions in III-V semiconductor quantum wells. Phys. Rev. B 99, 121405(R) (2019).
[3] I. Yahniuk, S.S. Krishtopenko, G. Grabecki et al. Magneto-transport in inverted HgTe quantum wells. npj Quantum Materials 4, 13 (2019).
[4] M.S. Zholudev, A.M. Kadykov, M.A. Fadeev et al. Experimental observation of temperature-driven topological phase transition in HgTe/CdHgTe quantum wells. Condens. Matter 4, 27 (2019).
[5] S.S. Krishtopenko, S. Ruffenach, F. Gonzalez-Posada et al. Terahertz spectroscopy of two-dimensional semimetal in three-layer InAs/GaSb/InAs quantum well. JETP Letters 109, 96 (2019).
[6] V. V. Korotyeyev, Y. M. Lyaschuk, V. A. Kochelap, et al. Interaction of sub-terahertz radiation with low-doped grating-based AlGaN/GaN plasmonic structures. Time-domain spectroscopy measurements and electrodynamic modeling, Semicond. phys. Quant. Elec. Optoelect. 22 (2), pp.237-251 (2019).
2018
[1] S.S. Krishtopenko, F. Teppe. Quantum spin Hall insulator with a large bandgap, Dirac fermions, and bilayer graphene analog. Science Adv. 4, eaap7529 (2018).
[2] A.M. Kadykov, S.S. Krishtopenko, B. Jouault et al. Temperature-induced topological phase transition in HgTe quantum wells. Phys.Rev. Lett. 120, 086401 (2018).
[3] I. Nardecchia, J. Torres et al. Out-of-equilibrium collective oscillation as phonon condensation in a model protein. Phys. Rev. X 8, 031061 (2018).
[4] S.S. Krishtopenko, F. Teppe. Realistic picture of helical edge states in HgTe quantum wells. Phys. Rev. B 97, 165408 (2018).
[5] W. Desrat, S.S. Krishtopenko et al. Band splitting in Cd3As2 measured by magnetotransport. Phys. Rev. B 97, 245203 (2018).
[6] S.S. Krishtopenko, S. Ruffenach et al. Temperature-dependent terahertz spectroscopy of inverted-band three-layer InAs/GaSb/InAs quantum well. Phys. Rev. B 97, 245419 (2018).
[7] J. Marczewski, D. Coquillat, W. Knap, et al. THz detectors based on Si-CMOS technology field effect transistors–advantages, limitations and perspectives for THz imaging and spectroscopy, Opto-Electronics Review, 26 (4), pp.261 (2018).
[8] D. Coquillat, etal., InP double heterojunction bipolar transistors for terahertz computed tomography, AIP Advances, 8, 085320 (2018).
2017
[1] G. Auton, D. B. But, J. Zhang et al. Terahertz detection and imaging using graphene ballistic rectifiers. Nano Letters 17,7015 (2017).
[2] S. Ruffenach, A. Kadykov, V.V. Rumyantsev et al. HgCdTe-based heterostructures for terahertz photonics. APL Materials 5, 035503 (2017).
[3] M. Marcinkiewicz, S. Ruffenach, S.S. Krishtopenko et al. Temperature-driven single-valley Dirac fermions in HgTe quantum wells. Phys. Rev. B 96, 035405 (2017).
[4] S. Ruffenach, S.S. Krishtopenko, L.S. Bovkun et al. Magneto-absorption of Dirac fermions in gapless “three-layer” InAs/GaSb/InAs quantum wells. JETP Letters 106, 727 (2017).
[5] S.S. Krishtopenko, A.V. Ikonnikov et al. Cyclotron resonance of Dirac fermions in InAs/GaSb/InAs quantum wells. Semiconductors 51, 38 (2017).
[6] G. Ginestet, N. Brechet, J. Torres, et al. Embroidered Antenna-Microchip Interconnections and Contour Antennas in Passive UHF RFID Textile Tags IEEE Antennas and Wireless Propagation Letters, 16, 1205 – 1208 (2017).
2016
[1] F. Teppe, M. Marcinkiewicz, S.S. Krishtopenko et al. Temperature-driven massless Kane fermions in HgCdTe crystals. Nature Communications 7, 12576 (2016).
[2] S.S. Krishtopenko, W. Knap, F. Teppe. Phase transitions in two tunnel-coupled HgTe quantum wells: Bilayer graphene analogy and beyond. Scientific Reports 6, 30755 (2016).
[3] S.S. Krishtopenko, I. Yahniuk, D.B. But et al. Pressure- and temperature-driven phase transitions in HgTe quantum wells. Phys. Rev. B 94, 245402 (2016).
[4] A.V. Ikonnikov, S.S. Krishtopenko et al. Temperature-dependent magnetospectroscopy of HgTe quantum wells. Phys. Rev. B 94, 155421 (2016).
[5] A.M. Kadykov, J. Torres, S.S. Krishtopenko et al. Terahertz imaging of Landau levels in HgTe-based topological insulators. Appl. Phys. Lett. 108, 262102 (2016).
[6] A.M. Kadykov, C. Consejo et al. Observation of topological phase transition by terahertz photoconductivity in HgTe-based transistors. Phys. Status Solidi C 13, 534 (2016).
[7] M.V. Yakunin, S.S. Krishtopenko et al. HgTe/CdHgTe double quantum well with a spectrum of bilayer graphene and peculiarities of its magnetotransport. JETP Letters 104, 403 (2016).
[8] L.S. Bovkun, S.S. Krishtopenko et al. Magnetospectroscopy of double HgTe/CdHgTe quantum wells. Semiconductors 50, 1532 (2016).
[9] N. Diakonova, P. Faltermeier, Dmytro But, et al. Saturation of photoresponse to intense THz radiation in AlGaN/GaN HEMT detector , Journal of Applied Physics, 120 (16), 164507 (2016).
[10] Krzesimir Szkudlarek, Maciej Sypek, Grzegorz Cywiński, Jarosław Suszek, Przemysław Zagrajeket al. Terahertz 3D printed diffractive lens matrices for field-effect transistor detector focal plane arrays, Optics Express, 24 (18), 20119-20131 (2016).
[11] V. Ryzhii et al. Two-dimensional plasmons in lateral carbon nanotube network structures and their effect on the terahertz radiation detection, Journal of Applied Physics, 120 (4), 044501 (2016).
[12] L. Viti, J. Hu, D. Coquillat, et al. Efficient Terahertz detection in black-phosphorus nano-transistors with selective and controllable plasma-wave, bolometric and thermoelectric response. Scientific Reports, 6, 20474 (2016).
[13] D. Coquillat, et al. Improvement of terahertz field effect transistor detectors by substrate thinning and radiation losses reduction, Optics Express, 24 (1), pp.272-281 (2016).